Organic reaction mechanism classification using machine learning

[ad_1]

  • Simonetti, M., Cannas, DM, Just-Baringo, X., Vitorica-Yrezabal, IJ & Larrosa, I. Cyclometallated ruthenium catalyst enables late-stage directed arylation of pharmaceuticals. Nat. Chem. 10724–731 (2018).

    Article
    CASE

    Google Scholar

  • Salazar, CA et al. Tailored quinones support high-turnover Pd catalysts for oxidative CH arylation with O2. Science 3701454–1460 (2020).

    Article
    CASE

    Google Scholar

  • DiRocco, DA et al. A multifunctional catalyst that stereoselectively assembles prodrugs. Science 356426–430 (2017).

    Article
    CASE

    Google Scholar

  • Li, T et al. Efficient, chemoenzymatic process for manufacture of the bicyclic Boceprevir [3.1.0]proline intermediate based on amine oxidase-catalyzed desymmetrization. J. Am. Chem. Soc. 1346467–6472 (2012).

    Article
    CASE

    Google Scholar

  • Nielsen, LP, Stevenson, CP, Blackmond, DG & Jacobsen, EN Mechanistic investigation leads to a synthetic improvement in the hydrolytic kinetic resolution of terminal epoxides. J. Am. Chem. Soc. 1261360–1362 (2004).

    Article
    CASE

    Google Scholar

  • van Dijk, L. et al. Mechanistic investigation of Rh(I)-catalysed asymmetric Suzuki–Miyaura coupling with racemic allyl halides. Nat. catal. 4284–292 (2021).

    Article

    Google Scholar

  • Camasso, NM & Sanford, MS Design, synthesis, and carbon-heteroatom coupling reactions of organometallic nickel(IV) complexes. Science 3471218–1220 (2015).

    Article
    CASE

    Google Scholar

  • Milo, A., Neel, AJ, Toste, FD & Sigman, MS A data-intensive approach to mechanistic elucidation applied to chiral anion catalysis. Science 347737–743 (2015).

    Article
    CASE

    Google Scholar

  • Butcher, TW et al. Desymmetrization of difluoromethylene groups by CF bond activation. Nature 583548–553 (2020).

    Article
    CASE

    Google Scholar

  • Cho, EJ et al. The palladium-catalyzed trifluoromethylation of aryl chlorides. Science 3281679–1681 (2010).

    Article
    CASE

    Google Scholar

  • Hutchinson, G., Alamillo-Ferrer, C. & Bures, J. Mechanistically guided design of an efficient and enantioselective aminocatalytic alpha-chlorination of aldehydes. J. Am. Chem. Soc. 1436805–6809 (2021).

    Article
    CASE

    Google Scholar

  • Schreyer, L. et al. Confined acids catalyze asymmetric single aldolizations of acetaldehyde enolates. Science 362216–219 (2018).

    Article
    CASE

    Google Scholar

  • Peters, BK et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 363838–845 (2019).

    Article
    CASE

    Google Scholar

  • Michaelis, L. & Menten, ML Die Kinetik der Invertinwirkung. Biochem. Z. 49333–369 (1913).

    CASE

    Google Scholar

  • Blackmond, DG Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions. Angelw. Chem. Int. Ed.Engl. 444302–4320 (2005).

    Article
    CASE

    Google Scholar

  • Mathew, JS et al. Investigations of Pd-catalyzed ArX coupling reactions informed by reaction progress kinetic analysis. J.Org. Chem. 714711–4722 (2006).

    Article
    CASE

    Google Scholar

  • Bures, J. A simple graphical method to determine the order in catalyst. Angelw. Chem. Int. Ed.Engl. 552028–2031 (2016).

    Article
    CASE

    Google Scholar

  • Burés, J. Variable time normalization analysis: general graphical elucidation of reaction orders from concentration profiles. Angelw. Chem. Int. Ed.Engl. 5516084–16087 (2016).

    Article

    Google Scholar

  • Shi, Y., Prieto, PL, Zepel, T., Grunert, S. & Hein, JE Automated experimentation powers data science in chemistry. Acc. Chem. Res. 54546–555 (2021).

    Article
    CASE

    Google Scholar

  • Burger, B. et al. A mobile robotic chemist. Nature 583237–241 (2020).

    Article
    CASE

    Google Scholar

  • Bedard, AC et al. Reconfigurable system for automated optimization of various chemical reactions. Science 3611220–1225 (2018).

    Article
    CASE

    Google Scholar

  • Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363eaav2211 (2019).

    Article
    CASE

    Google Scholar

  • Clauset, A., Shalizi, CR & Newman, MEJ Power-law distributions in empirical data. SIAM Rev. 51661–703 (2009).

    Article
    MATH

    Google Scholar

  • Martinez-Carrion, A. et al. Kinetic treatments for catalyst activation and deactivation processes based on variable time normalization analysis. Angelw. Chem. Int. Ed.Engl. 5810189–10193 (2019).

    Article
    CASE

    Google Scholar

  • Bernacki, JP & Murphy, RM Model discrimination and mechanistic interpretation of kinetic data in protein aggregation studies. Biophys. J. 962871–2887 (2009).

    Article
    CASE

    Google Scholar

  • Pfluger, PM & Glorius, F. Molecular machine learning: the future of synthetic chemistry? Angelw. Chem. Int. Ed.Engl. 5918860–18865 (2020).

    Article

    Google Scholar

  • Segler, MHS, Preuss, M. & Waller, MP Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555604–610 (2018).

    Article
    CASE

    Google Scholar

  • Raissi, M., Yazdani, A. & Karniadakis, GE Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 3671026–1030 (2020).

    Article
    CASE
    MATH

    Google Scholar

  • Hermann, J., Schatzle, Z. & Noe, F. Deep-neural-network solution of the electronic Schrodinger equation. Nat. Chem. 12891–897 (2020).

    Article
    CASE

    Google Scholar

  • Shields, BJ et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 59089–96 (2021).

    Article
    CASE

    Google Scholar

  • Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596590–596 (2021).

    Article
    CASE

    Google Scholar

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596583–589 (2021).

    Article
    CASE

    Google Scholar

  • Hueffel, JA et al. Accelerated dinuclear palladium catalyst identification through unsupervised machine learning. Science 3741134–1140 (2021).

    Article
    CASE

    Google Scholar

  • Haitao, X., Junjie, W. & Lu, L. In proc. 1st International Conference on E-Business Intelligence 303–309 (Atlantis Press, 2010).

  • Batista, GEAPA et al. In Advances in Intelligent Data Analysis VI (eds Fazel Famili, A. et al.) 24–35 (Springer, 2005).

  • Wei, J.-M., Yuan, X.-J., Hu, Q.-H. & Wang, S.-Q. A novel measure for evaluating classifiers. System Expert Appl. 373799–3809 (2010).

    Article

    Google Scholar

  • Alberton, AL, Schwaab, M., Schmal, M. & Pinto, JC Experimental errors in kinetic tests and its influence on the precision of estimated parameters. Part I—analysis of first-order reactions. Chem. Eng. J. 155816–823 (2009).

    Article
    CASE

    Google Scholar

  • Pacheco, H., Thiengo, F., Schmal, M. & Pinto, JC A family of kinetic distributions for interpretation of experimental fluctuations in kinetic problems. Chem. Eng. J. 332303–311 (2018).

    Article
    CASE

    Google Scholar

  • Storer, AC, Darlison, MG & Cornish-Bowden, A. The nature of experimental error in enzyme kinetic measurements. Biochem. J 151361–367 (1975).

    Article
    CASE

    Google Scholar

  • Valko, E. & Turányi, T. In Lindner, E., Micheletti, A. & Nunes, C. (eds) Mathematical Modeling in Real Life Problems. Mathematics in Industry https://doi.org/10.1007/978-3-030-50388-8_3 (2020).

  • Thiel, V., Wannowius, KJ, Wolff, C., Thiele, CM & Plenio, H. Ring-closing metathesis reactions: interpretation of conversion-time data. Chem. Eur. J. 1916403–16414 (2013).

    Article
    CASE

    Google Scholar

  • Joannou, MV, Hoyt, JM & Chirik, PJ Investigations into the mechanism of inter- and intramolecular iron-catalyzed [2 + 2] cycloaddition of alkenes. J. Am. Chem. Soc. 1425314–5330 (2020).

    Article
    CASE

    Google Scholar

  • Knapp, SMM et al. Mechanistic studies of alkene isomerization catalyzed by CCC-pincer complexes of iridium. organometallics 33473–484 (2014).

    Article
    CASE

    Google Scholar

  • Stroek, W., Keilwerth, M., Pividori, DM, Meyer, K. & Albrecht, M. An iron-mesoionic carbene complex for catalytic intramolecular CH amination utilizing organic azides. J. Am. Chem. Soc. 14320157–20165 (2021).

    Article
    CASE

    Google Scholar

  • Lehnherr, D. et al. Discovery of a photoinduced dark catalytic cycle using in situ LED-NMR spectroscopy. J. Am. Chem. Soc. 14013843–13853 (2018).

    Article
    CASE

    Google Scholar

  • Ludwig, JR, Zimmerman, PM, Gianino, JB & Schindler, CS Iron(III)-catalyzed carbonyl-olefin metathesis. Nature 533374–379 (2016).

    Article
    CASE

    Google Scholar

  • Albright, H. et al. Catalytic carbonyl-olefin metathesis of aliphatic ketones: iron(III) homo-dimers as Lewis acidic superelectrophils. J. Am. Chem. Soc. 1411690–1700 (2019).

    Article
    CASE

    Google Scholar

  • Janse van Rensburg, W., Steynberg, PJ, Meyer, WH, Kirk, MM & Forman, GS DFT prediction and experimental observation of substrate-induced catalyst decomposition in ruthenium-catalyzed olefin metathesis. J. Am. Chem. Soc. 12614332–14333 (2004).

    Article

    Google Scholar

  • van der Eide, EF & Piers, WE Mechanistic insights into the ruthenium-catalyzed diene ring-closing metathesis reaction. Nat. Chem. 2571–576 (2010).

    Article

    Google Scholar

  • [ad_2]

    Source link

    Add Comment